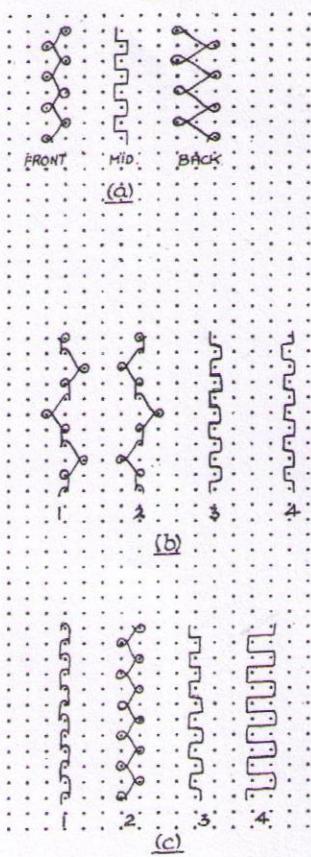


CHANGE OWNERS
OF VERSATEX INC
100 MADISON AV
NEW YORK, NY


WARP KNIT ENGINEERING

By A. REISFELD

Published by the
National Knitted Outerwear Association
51 Madison Avenue, New York, N.Y. 10010

Copyright 1966
National Knitted Outerwear Association

FIGURE 4

its prohibitive cost.

The spandex is used bare as covering would greatly increase its cost out of proportion to the advantages. Two-way stretch tricot fabrics are either made of 40 denier spandex/40 denier nylon or 70 denier spandex/70 denier nylon combinations. (.706).

In referring to spandex denier, it should be realized that its nominal designation changes considerably at different stages of processing. Thus, the yarn sold as 40 denier is only 40 denier in the relaxed state. On warping, a 100 per cent stretch is imparted to it making it 20 denier on beams. The knitting tensions reduce the denier down to 17. Yet, once knit the yarn recovers to 25-26 denier.

All this makes calculation of percentage spandex content impossible since the final denier in the finished fabric is unknown. The only way to determine this is to remove the spandex component from a test sample of known weight by mechanical or chemical means and weigh the nylon residue.

Following are the points to be observed in knitting of bare spandex yarns on tricot equipment:

1. Power driven let-offs are absolutely essential for uniform tension.

2. Tensometers must be provided on the warp sheet of each spandex spool to verify the constancy of warp tension. The runner indication is meaningless unless correlated to tensometer reading.

3. Due to the very high coefficient of friction of spandex, all guide and tension rods com-

ing in contact with it must be made rotary and of matt finish to minimize the yarn drag.

4. The knockover set should be high.

5. The presser should be firm.

6. Selvage spreaders should be used to prevent excessive fabric narrowing and tension problems at the selvages.

7. Sley points should not be used to avoid drag on the yarn.

Dyeing and finishing of spandex fabrics requires special procedures and close control. The technology is still in its early stages of development. (707)

RASCHEL FABRICS—The best known Raschel elastomer product is so-called "power net" extensively used in the foundation garment industry. Its construction is shown on Figure 4 (b). Front bars 1 and 2 threaded 1 in, 1 out with nylon, rayon or other non-elastic yarn knit a simple ground mesh repeating on six courses. Back bars 3 and 4 threaded 1 in, 1 out with an elastomeric yarn perform a short inlay movement.

The back bar yarns are fed in under heavy tension and are incorporated in the ground structure in an almost vertical configuration. Once the fabric is removed from the machine, the elastomeric yarn recovers from its extension, collapses the ground mesh and lends the entire structure a good measure of two-way stretch.

Because bars 1 and 2 have a symmetrical movement and equal runners, their yarn is put up on a common, full set warp. The same applies for bars 3

Although better stretch and recovery results would be obtained by using elastomeric yarn on both bars, it is not done due to economic reasons. For example, 40 denier spandex (bare) costs about \$18 a pound on warps and when knit into a fabric in combination with 40 denier nylon it has to sell upwards of \$3.50 per sq. yd. If the fabric were made in 100 per cent spandex it would become unsaleable on account of

f the "Velcro" type fast-
employed in a variety of
and non-apparel fields.

unbroken loop principle
itself well to a develop-
of raised pattern effects on
ground in the form of
, diagonals and checks.
patterns are produced by
bined effect of a partially
ed front bar and a suit-
apping movement.

ping, particularly of un-
loop fabrics, is a diffi-
d exacting art. The reader
erred here to literature
g the subject of napping
eral. (698 to 704).

stic fabrics—Warp knitting
ent is capable of making
ety of elastic fabric for
tion, underwear, swim-
medical and industrial
ses.

manufacture of elastic
for foundation garments
own in the last decade
major industry. It suc-
in capturing the lion's
of the market from weav-
lace makers who tradi-
y dominated it.
re are two basic methods
nufacturing elastic fabrics,
ing to the type of yarn

By using elastomeric yarns
as spandex, extruded or
tural rubber. Fabrics made
these yarns are marked by
m to high modulus.
By using stretch yarns proc-
on false twist, edge crimp
ier texturizing principles.
fabrics have a compara-
ow modulus and are lower
than those made with
neric yarns.
rics knit with elastomeric
will be discussed first.

Distinction must be made be-
tween tricot and Raschel fabric
since each is knit on a different
basis and employs different ma-
terials.

TRICOT ELASTIC FABRICS—
Tricot elastic fabrics may be
divided into two groups accord-
ing to the type of stretch devel-
oped:

- Fabrics with unidirectional
or one-way stretch.
- Fabrics with a two-way
stretch.

**UNIDIRECTIONAL STRETCH
FABRICS**—Fabrics with unidi-
rectional stretch are made on
3-bar equipment as shown in
Figure 4 (a). The front and
back bars threaded with nylon
knit the ground structure in-
corporating the elastomeric in-
lay yarn carried on the middle
bar. Due to the tension under
which the inlay is kept, its
threads have a vertical config-
uration in the fabric. The stretch
is produced by the elastomeric
yarn collapsing the ground fab-
ric structure in the length direc-
tion and thus permitting its ex-
tension when the fabric is
stressed. Its recovery is a func-
tion of the elastomeric yarn
modulus.

The ground bar yarn may be
15, 20, 40 denier or heavier
nylon while the inlay 140 - 280
denier spandex or equivalent
gauge rubber. The elastomeric
yarn may be single, double
covered or bare. The latter,
however, though less expensive,
poses considerably greater prob-
lems at all levels. The bare
materials require special, costly
warping equipment and rotary
warp sheet guiding devices on
the tricot machine. (705).
Dyeing may pose difficulties on

account of the different affinity
for a color between the elasto-
meric and ground yarns.

The amount of fabric stretch
depends mainly on the yarn
elongation, runner of the mid-
dle bar and on the mode of
finishing. The runner is kept
down to 3 - 6 inch which intro-
duces yet another problem due
to the difficulty of making the
power let-offs deliver consist-
ently such short runners.

Fabrics made in this manner
can develop up to 150 per cent
stretch. Very attractive effects
have been obtained by printing
and flocking.

TWO-WAY STRETCH FABRICS—
Two-way stretch fabrics are
made as a rule on 2-bar ma-
chines by knitting the elasto-
meric yarn, not laying it in as
in the previous case. One bar
carries the elastomeric, while
the other a non elastic yarn,
usually nylon. The construction
is either jersey or 1 - 0, 1 - 2 on
one bar and 1 - 2, 1 - 0 on the
other. (705 A.)

The presence of elastomeric
yarn does not, contrary to a
general assumption increase
substantially the widthwise ex-
tension of the fabric. This is
limited by the nylon component
of the fabric structure. The
elastomeric yarn, however, has
a recovery power or "snap"
much greater than a similar all-
nylon construction.

The elastomeric yarn knit
into loops collapses the fabric
in the length direction to pro-
duce longitudinal stretch. The
latter is inferior to width wise
stretch but sufficient to qualify
the fabric for a two-way stretch
designation.