

7-2 TOOLS AND EQUIPMENT

GENERAL PURPOSE CUTTING TOOLS

The lathe cutting tool or tool bit must be made of the correct material and ground to the correct angles to machine a workpiece efficiently. The most common tool bit is the general all-purpose bit made of high-speed steel. These tool bits are generally inexpensive, easy to grind on a bench or pedestal grinder, take lots of abuse and wear, and are strong enough for all-around repair and fabrication. High-speed steel tool bits can handle the high heat that is generated during cutting and are not changed after cooling. These tool bits are used for turning, facing, boring and other lathe operations. Tool bits made from special materials such as carbides, ceramics, diamonds, cast alloys are able to machine workplaces at very high speeds but are brittle and expensive for normal lathe work. High-speed steel tool bits are available in many shapes and sizes to accommodate any lathe operation.

SINGLE POINT TOOL BITS

Single point tool bits can be one end of a high-speed steel tool bit or one edge of a carbide or ceramic cutting tool or insert. Basically, a single point cutter bit is a tool that has only one cutting action proceeding at a time. A machinist or machine operator should know the various terms applied to the single point tool bit to properly identify and grind different tool bits (Figure 7-4).

- The shank is the main body of the tool bit.
- The nose is the part of the tool bit which is shaped to a point and forms the corner between the side cutting edge and the end cutting edge. The nose radius is the rounded end of the tool bit.
- The face is the top surface of the tool bit upon which the chips slide as they separate from the work piece.
- The side or flank of the tool bit is the surface just below and adjacent to the cutting edge.
- The cutting edge is the part of the tool bit that actually cuts into the workpiece, located behind the nose and adjacent to the side and face.
- The base is the bottom surface of the tool bit, which usually is ground flat during tool bit manufacturing.
- The end of the tool bit is the near-vertical surface which, with the side of the bit, forms the profile of the bit. The end is the trailing surface of the tool bit when cutting.
- The heel is the portion of the tool bit base immediately below and supporting the face.

Angles of Tool Bits

The successful operation of the lathe and the quality of work that may be achieved depend largely on the angles that form the cutting edge of the tool bit (Figure 7-4). Most tools are hand ground to the desired shape on a bench or pedestal grinder. The cutting tool geometry for the rake and relief angles must be properly ground, but the overall shape of the tool bit is determined by the preference of the machinist or machine operator. Lathe tool bit shapes can be pointed, rounded, squared off, or irregular in shape and still cut quite well as long as the tool bit angles are properly ground for the type of material being machined. The angles are the side and back rake angles, the side and end cutting edge angles, and the side and end relief angles. Other angles to be considered are the radius on the end of the tool bit and the angle of the tool holder. After knowing how the angles affect the cutting action, some recommended cutting tool shapes can be considered.

Rake angle pertains to the top surface of the tool bit. There are two types of rake angles, the side and back rake angles (Figure 7-4). The rake angle can be positive, negative, or have no rake angle at all. The tool holder can have an angle, known as the tool holder angle, which averages about 150°, depending on the model of tool holder selected. The tool holder angle combines with the back rake angle to provide clearance for the heel of the tool bit from the workpiece and to facilitate chip removal. The side rake angle is measured back from the cutting edge and can be a positive rake angle or have no rake at all.

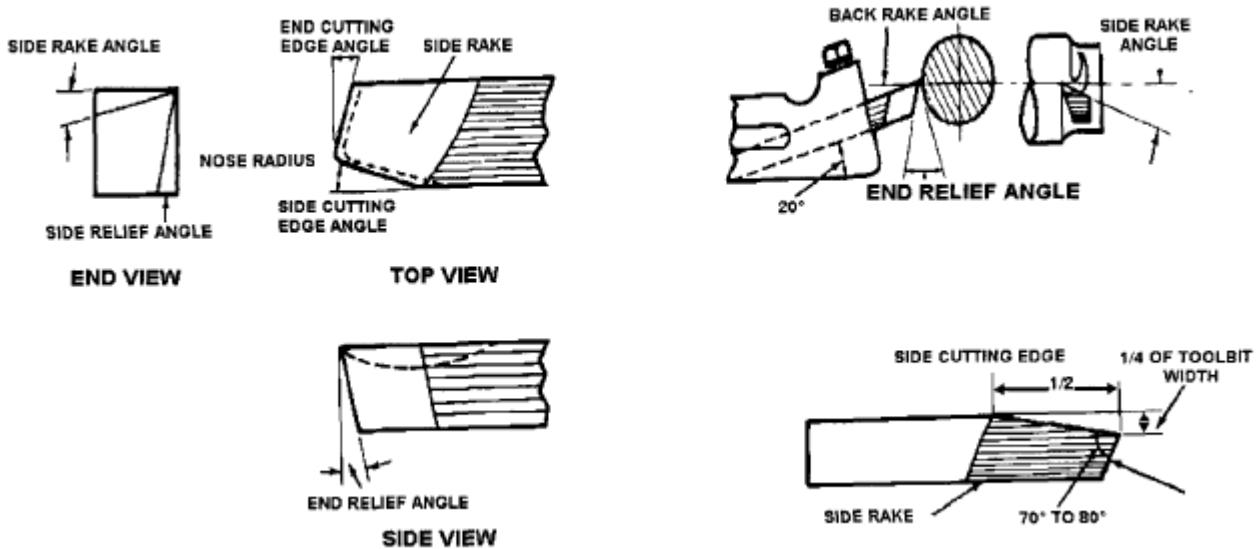


Figure 7-4. Tool bit angles.

Rake angles cannot be too great or the cutting edge will lose strength to support the cutting action. The side rake angle determines the type and size of chip produced during the cutting action and the direction that the chip travels when leaving the cutting tool. Chip breakers can be included in the side rake angle to ensure that the chips break up and do not become a safety hazard.

Side and relief angles, or clearance angles, are the angles formed behind and beneath the cutting edge that provide clearance or relief to the cutting action of the tool. There are two types of relief angles, side relief and end relief. Side relief is the angle ground into the tool bit, under the side of the cutting edge, to provide clearance in the direction of tool bit travel. End relief is the angle ground into the tool bit to provide front clearance to keep the tool bit heel from rubbing. The end relief angle is supplemented by the tool holder angle and makes up the effective relief angle for the end of the tool bit.

Side and cutting edge angles are the angles formed by the cutting edge with the end of the tool bit (the end cutting edge angle), or with the side of the tool bit (the side cutting edge angle). The end cutting edge angle permits the nose of the tool bit to make contact with the work and aids in feeding the tool bit into the work. The side cutting edge angle reduces the pressure on the tool bit as it begins to cut. The side rake angle and the side relief angle combine to form the wedge angle (or lip angle) of the toolbit that provides for the cutting action (Figure 7-4).

A radius ground onto the nose of the tool bit can help strengthen the tool bit and provide for a smooth cutting action.

Shapes of Tool Bits

The overall shape of the lathe tool bits can be rounded, squared, or another shape as long as the proper angles are included. Tool bits are identified by the function they perform such as turning or facing. They can also be identified as roughing tools or finishing tools. Generally, a roughing tool has a radius ground onto the nose of the tool bit that is smaller than the radius for a finishing or general-purpose tool bit. Experienced machinists have found the following shapes to be useful for different lathe operations. (Figure 7-5).

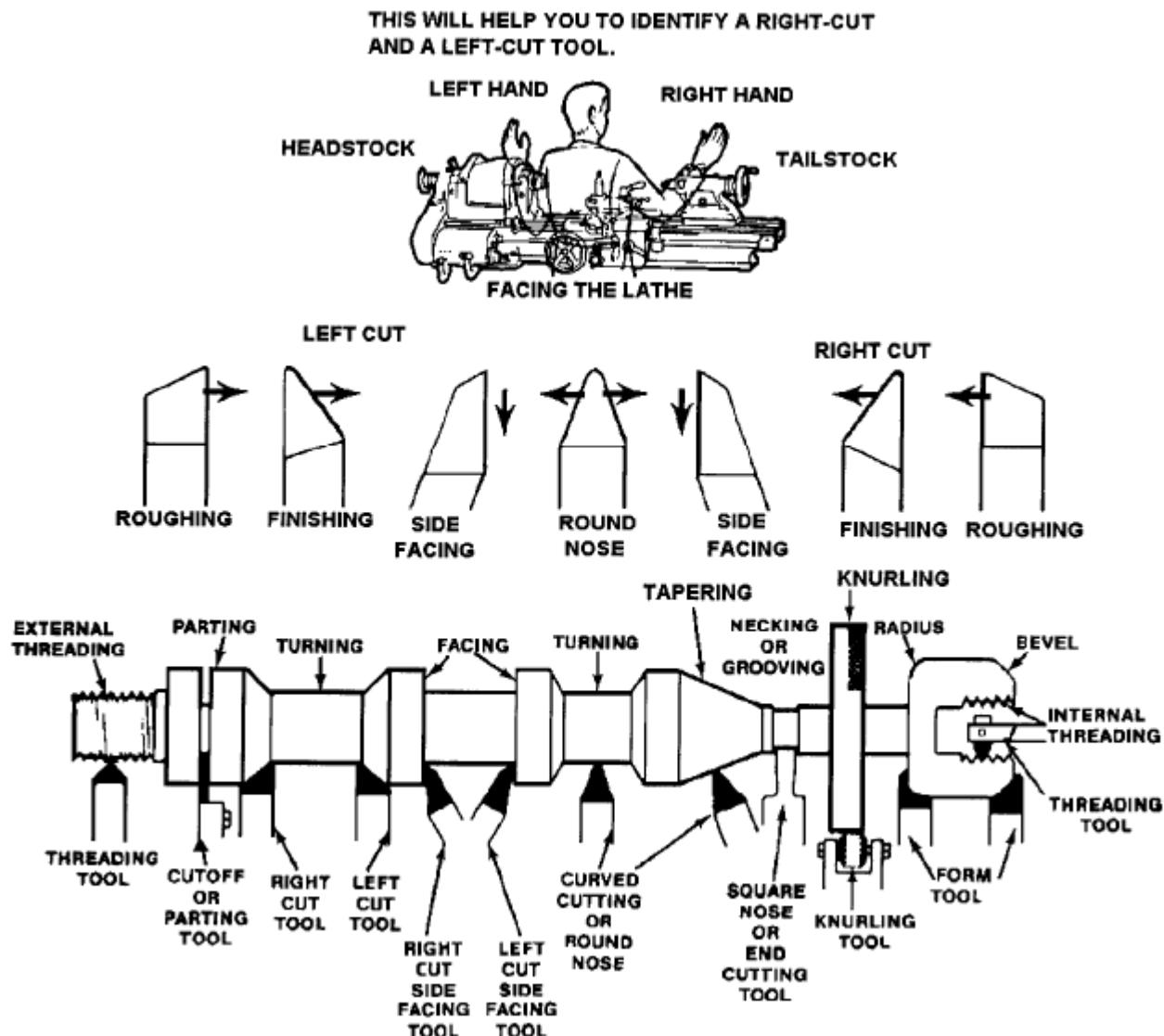


Figure 7-5. Shapes of tool bits.

A right-hand turning tool bit is shaped to be fed from right to left. The cutting edge is on the left side of the tool bit and the face slopes down away from the cutting edge. The left side and end of the tool bit are ground with sufficient clearance to permit the cutting edge to bear upon the workpiece without the heel rubbing on the work. The right-hand turning tool bit is ideal for taking light roughing cuts as well as general all-around machining.

The round-nose turning tool bit is very versatile and can be used to turn in either direction for roughing and finishing cuts. No side rake angle is ground into the top face when used to cut in either direction, but a small back rake angle may be needed for chip removal. The nose radius is usually ground in the shape of a half-circle with a diameter of about 1/32 inch.

The right-hand facing tool bit is intended for facing on right-hand side shoulders and the right end of a workpiece. The cutting edge is on the left-hand side of the bit, and the nose is ground very sharp for machining into a square corner. The direction of feed for this tool bit should be away from the center axis of the work, not going into the center axis. A left-hand facing tool bit is the opposite of the right-hand facing tool bit and is intended to machine and face the left sides of shoulders.

The parting tool bit, Figure 7-6, is also known as the cutoff tool bit. This tool bit has the principal cutting edge at the squared end of the bit that is advanced at a right angle into the workpiece. Both sides should have sufficient clearance to prevent binding and should be ground slightly narrower at the back than at the cutting edge. Besides being used for parting operations, this tool bit can be used to machine square corners and grooves.

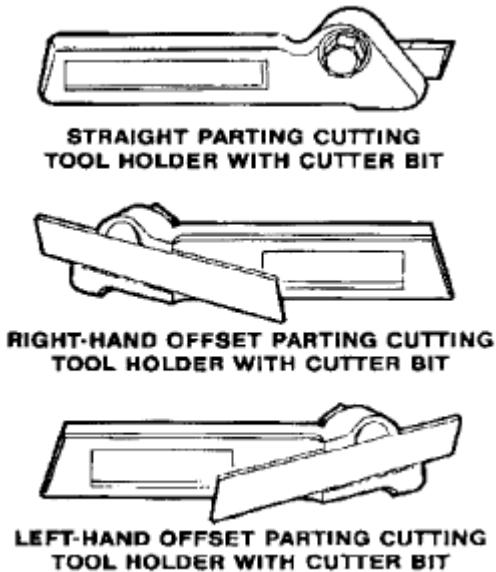


Figure 7-6. Parting tool bits.

Thread-cutting tool bits, Figure 7-7, are ground to cut the type and style of threads desired. Side and front clearances must be ground, plus the special point shape for the type of thread desired. Thread-cutting tool bits can be ground for standard 60° thread forms or for square, Acme, or special threads. Thread-cutting forms are discussed in greater detail later in this chapter.

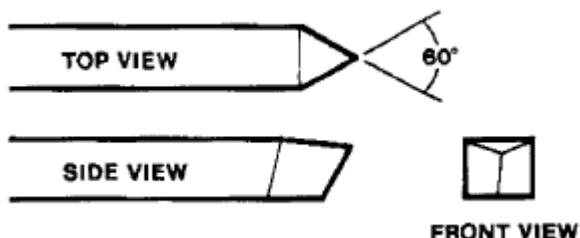
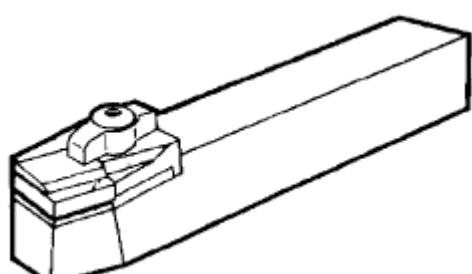



Figure 7-7. Thread cutting tool bit.

SPECIAL TYPES OF LATHE CUTTING TOOLS

Besides the common shaped tool bits, special lathe operations and heavy production work require special types of cutting tools. Some of the more common of these tools are listed below.

Tungsten carbide, tantalum carbide, titanium carbide, ceramic, oxide, and diamond-tipped tool bits (Figure 7-8), and cutting tool inserts are commonly used in high-speed production work when heavy cuts are necessary and where exceptionally hard and tough materials are encountered. Standard shapes for tipped tool bits are similar to high-speed steel-cutting tool shapes. Carbide and ceramic inserts can be square, triangular, round, or other shapes. The inserts are designed to be indexed or rotated as each cutting edge gets dull and then discarded. Cutting tool inserts are not intended for reuse after sharpening.

Figure 7-8. Tipped tool bit.

Specially formed thread cutter mounted in a thread "cutter holder (Figure 7-9). This tool is designed for production high-speed thread cutting operations. The special design of the cutter allows for sharp and strong cutting edges which need only to be re-sharpened occasionally by grinding the face. The cutter mounts into a special tool holder that mounts to the lathe tool post

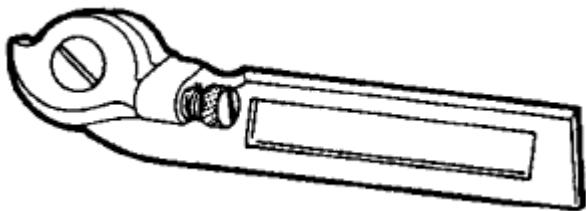


Figure 7-9. Thread cutting tool holder and cutter.

The common knurling tool, Figure 7-10, consists of two cylindrical cutters, called knurls, which rotate in a specially designed tool holder. The knurls contain teeth which are rolled against the surface of the workpiece to form depressed patterns on the workpiece. The common knurling tool accepts different pairs of knurls, each having a different pattern or pitch. The diamond pattern is most widely used and comes in three pitches: 14, 21, or 33. These pitches produce coarse, medium, and fine knurled patterns.

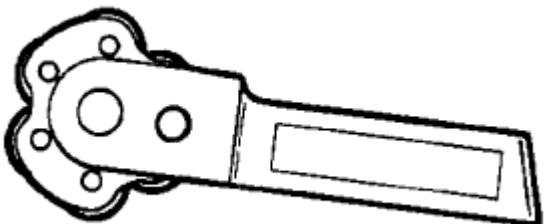


Figure 7-10. The common knurling tool.

Boring tool bits, Figure 7-11, are ground similar to left-hand turning tool bits and thread-cutting tool bits, but with more end clearance angle to prevent the heel of the tool bit from rubbing against the surface of the bored hole. The boring tool bit is usually clamped to a boring tool holder, but it can be a one-piece unit. The boring tool bit and tool holder clamp into the lathe tool post.

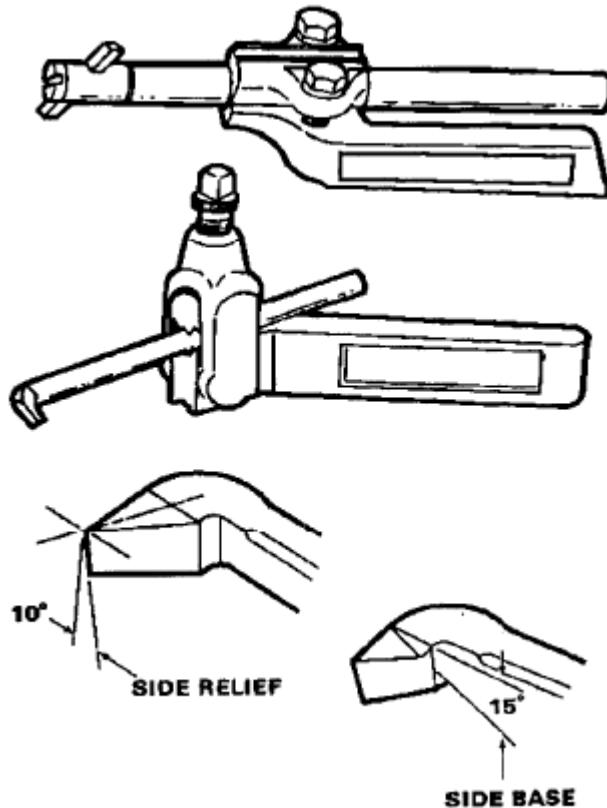


Figure 7-11. Boring tool bits and holders.

There is no set procedure to grinding lathe tool bit angles and shapes, but there are general guidelines that should be followed. Do not attempt to use the bench or pedestal grinder without becoming fully educated as to its safety, operation, and capabilities. In order to effectively grind a tool bit, the grinding wheel must have a true and clean face and be of the appropriate material for the cutting tool to be ground. Carbide tool bits must be ground on a silicon carbide grinding wheel to remove the very hard metal.

High-speed steel tool bits are the only tool bits that can effectively be ground on the bench or pedestal grinder when equipped with the aluminum oxide grinding wheel which is standard for most field and maintenance shops. Before grinding, shaping, or sharpening a high-speed steel tool bit, inspect the entire grinder for a safe setup and adjust the tool rests and guards as needed for tool bit grinding (Figure 7- 12).

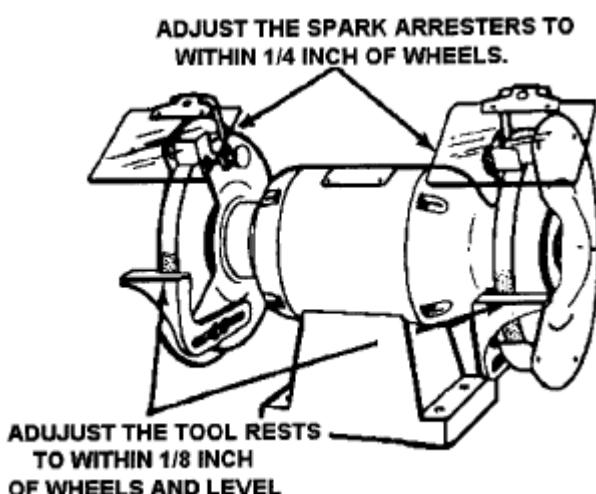
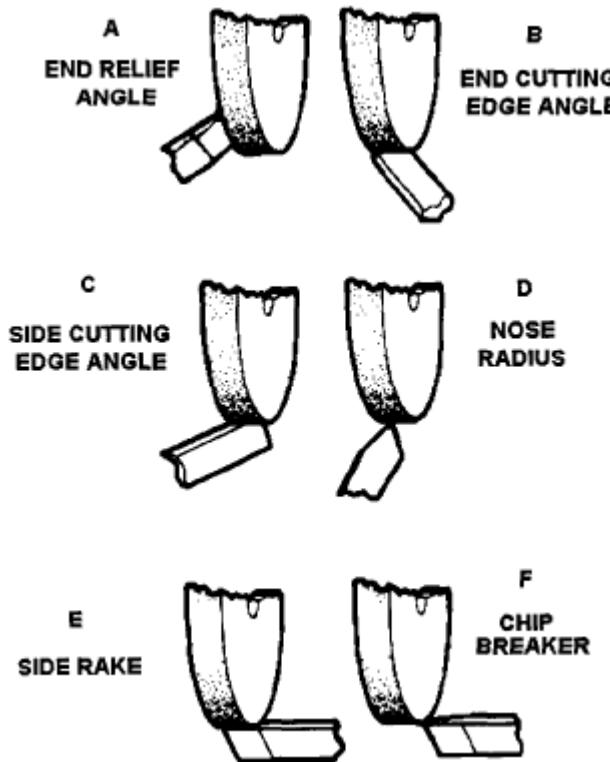



Figure 7-12. Grinder setup for lathe and tool bit grinding.

Set the tool rest 1/8 inch or less from the wheel, and adjust the spark arrestor 1/4 inch or less. Each grinder is usually

equipped with a coarse-grained wheel for rough grinding and a fine-grained wheel for fine and finish grinding. Dress the face of the grinding wheels as needed to keep a smooth, flat grinding surface for the tool bit. When grinding the side and back rake angles, ensure the grinding wheel has a sharp corner for shaping the angle. Dip the tool bit in water occasionally while grinding to keep the tool bit cool enough to handle and to avoid changing the property of the metal by overheating. Frequently inspect the tool bit angles with a protractor or special grinding gage. Grind the tool bit to the recommended angles in the reference for tool bit geometry (Table 7-1 in Appendix A). After grinding to the finished shape, the tool bit should be honed lightly on an oilstone to remove any burrs or irregular high spots. The smoother the finish on the cutting tool, the smoother the finish on the work. Figure 7-13 shows the steps involved in grinding a round nose tool bit to be used for turning in either direction. As a safety note, never use the side of the grinding wheel to grind a tool bit, as this could weaken the bonding of the wheel and cause it to crack and explode.

Figure 7-13. Grinding tool bits.

TOOL HOLDERS AND TOOL POSTS

Lathe tool holders are designed to securely and rigidly hold the tool bit at a fixed angle for properly machining a workpiece (Figure 7-14). Tool holders are designed to work in conjunction with various lathe tool posts, onto which the tool holders are mounted. Tool holders for high speed steel tool bits come in various types for different uses. These tool holders are designed to be used with the standard round tool post that usually is supplied with each engine lathe (Figure 7-15). This tool post consists of the post, screw, washer, collar, and rocker, and fits into the T-slot of the compound rest.

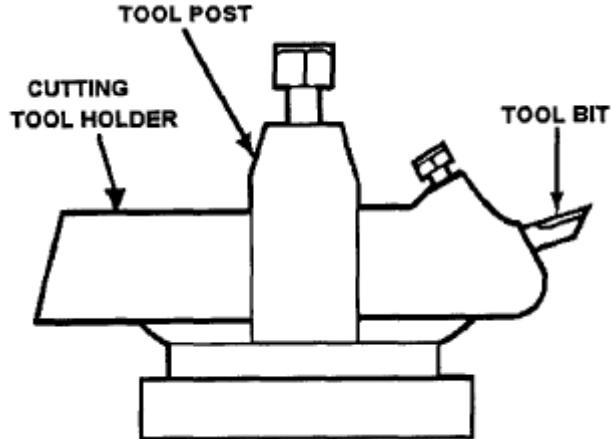


Figure 7-14. Tool holder with tool bit mounted in a tool pose.

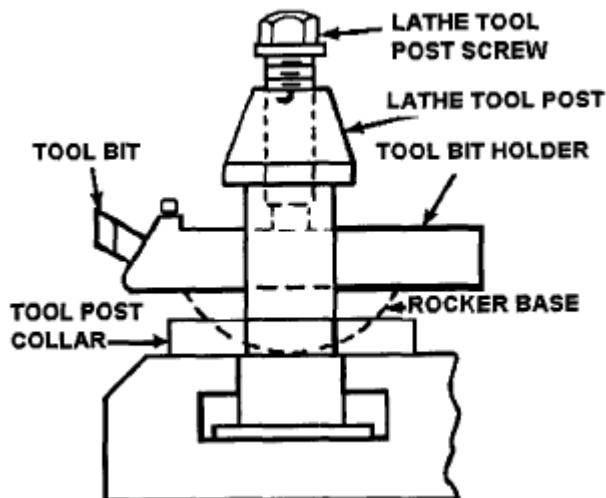
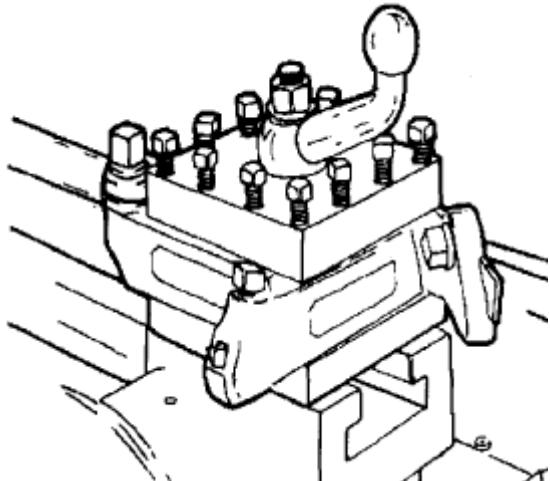
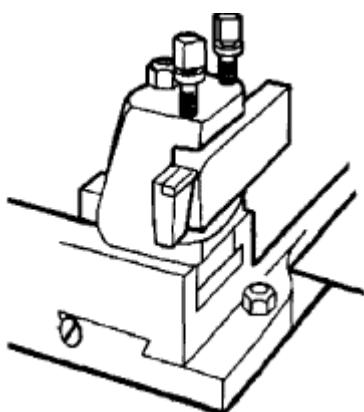
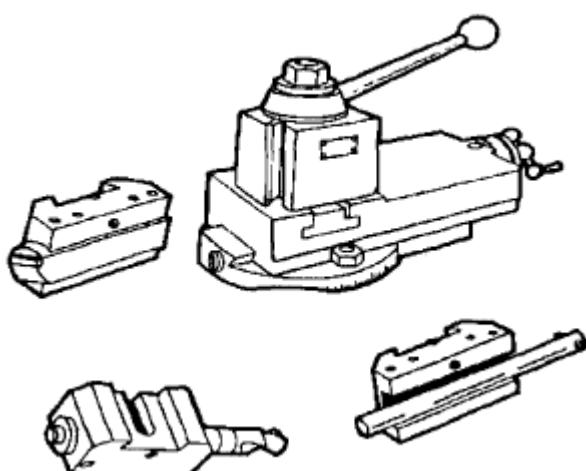



Figure 7-15. Standard round tool post.


Standard tool holders for high-speed steel cutting tools have a square slot made to fit a standard size tool bit shank. Tool bit shanks can be 1/4-inch, 5/16-inch, 3/8-inch, and greater, with all the various sizes being manufactured for all the different lathe manufacturer's tool holder models. Some standard tool holders for steel tool bits are the straight tool holder, right and left offset tool holder, and the zero rake tool holder designed for special carbide tool bits. Other tool holders to fit the standard round tool post include straight, left, and right parting tool holders, knurling tool holders, boring bar tool holders, and specially formed thread cutting tool holders.

The turret tool post (Figure 7-16) is a swiveling block that can hold many different tool bits or tool holders. Each cutting tool can quickly be swiveled into cutting position and clamped into place using a quick clamping handle. The turret tool post is used mainly for high-speed production operations.


Figure 7-16. Turret tool post.

The heavy-duty or open-sided tool post (Figure 7-17) is used for holding a single carbide-tipped tool bit or tool holder. It is used mainly for very heavy cuts that require a rigid tool holder.

Figure 7-17. Heavy-duty or open-sided tool post.

The quick-change tool system (Figure 7-18) consists of a quick-change dovetail tool post with a complete set of matching dovetailed tool holders that can be quickly changed as different lathe operations become necessary. This system has a quick-release knob on the top of the tool post that allows tool changes in less than 5 seconds, which makes this system valuable for production machine shops.

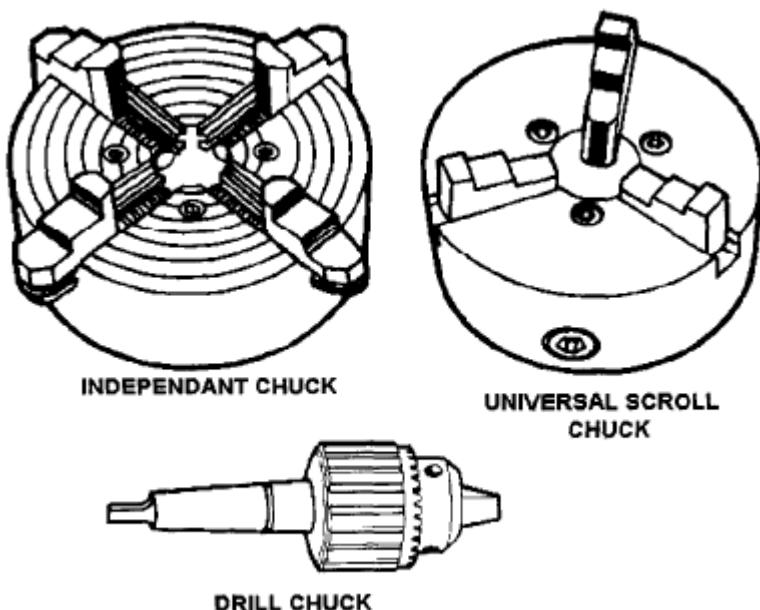


Figure 7-18. Quick change tool systems.

WORK HOLDING DEVICES

Many different devices, such as chucks, collets, faceplates, drive plates, mandrels, and lathe centers, are used to hold and drive the work while it is being machined on a lathe. The size and type of work to be machined and the particular operation that needs to be done will determine which work holding device is best for any particular job. Another consideration is how much accuracy is needed for a job, since some work holding devices are more accurate than others. Operational details for some of the more common work holding devices follow.

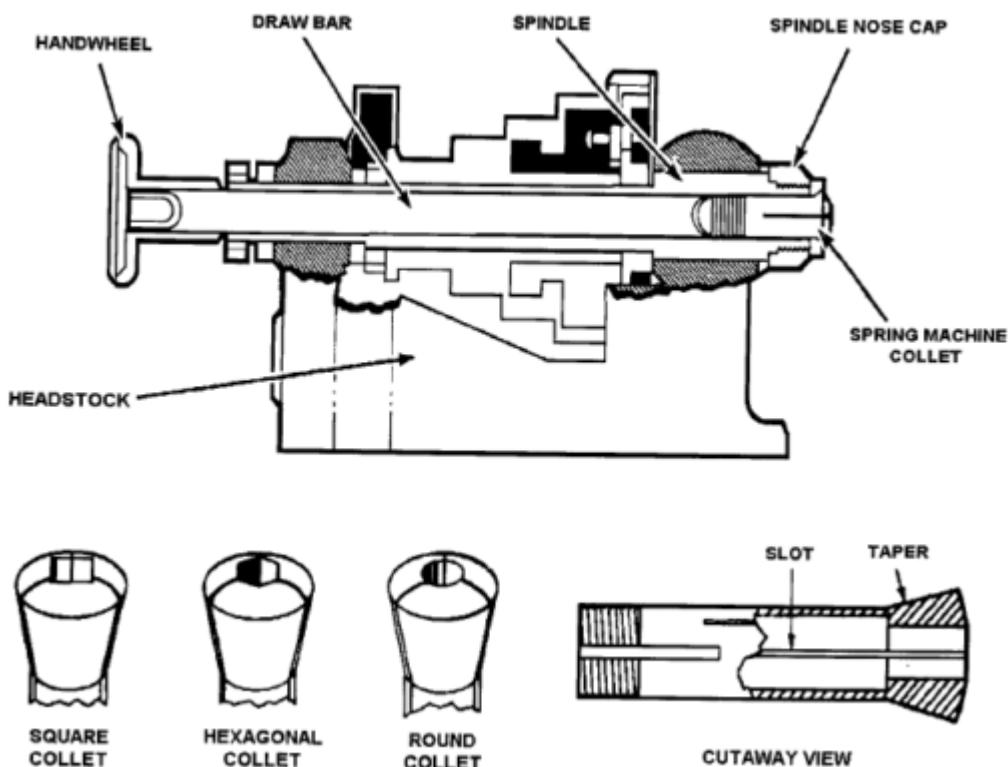
The universal scroll chuck, Figure 7-19, usually has three jaws which move in unison as an adjusting pinion is rotated. The advantage of the universal scroll chuck is its ease of operation in centering work for concentric turning. This chuck is not as accurate as the independent chuck, but when in good condition it will center work within 0.002 to 0.003 inches of runout.

Figure 7-19. Lathe chucks.

The jaws are moved simultaneously within the chuck by a scroll or spiral-threaded plate. The jaws are threaded to the scroll and move an equal distance inward or outward as the scroll is rotated by the adjusting pinion. Since the jaws are individually aligned on the scroll, the jaws cannot usually be reversed. Some manufacturers supply two sets of jaws, one for internal work and one for external work. Other manufacturers make the jaws in two pieces so the outside, or gripping surface may be reversed, which can be interchanged.

The universal scroll chuck can be used to hold and automatically center round or hexagonal workpieces. Having only three jaws, the chuck cannot be used effectively to hold square, octagonal, or irregular shapes.

The independent chuck, Figure 7-19, generally has four jaws which are adjusted individually on the chuck face by means of adjusting screws. The chuck face is scribed with concentric circles which are used for rough alignment of the jaws when chucking round workpieces. The final adjustment is made by turning the workpiece slowly by hand and using a dial indicator to determine its concentricity. The jaws are then readjusted as necessary to align the workpiece within the desired tolerances.


The jaws of the independent chuck may be used as illustrated or may be reversed so that the steps face in the opposite direction; thus workpieces can be gripped either externally or internally. The independent chuck can be used to hold square, round, octagonal, or irregularly shaped workpieces in either a concentric or eccentric position due to the independent operation of each jaw.

Because of its versatility and capacity for fine adjustment, the independent chuck is commonly used for mounting odd-shaped workpieces which must be held with extreme accuracy.

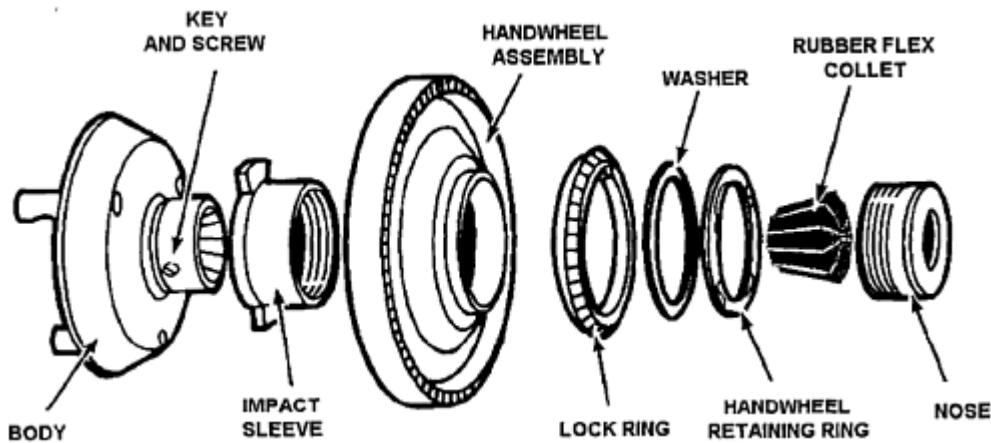
A combination chuck combines the features of the independent chuck and the universal scroll chuck and can have either three or four jaws. The jaws can be moved in unison on a scroll for automatic centering or can be moved individually if desired by separate adjusting screws.

The drill chuck, Figure 7-19, is a small universal chuck which can be used in either the headstock spindle or the tailstock for holding straight-shank drills, reamers, taps, or small diameter workpieces. The drill chuck has three or four hardened steel jaws which are moved together or apart by adjusting a tapered sleeve within which they are contained. The drill chuck is capable of centering tools and small-diameter workpieces to within 0.002 or 0.003 inch when firmly tightened.

The collet chuck is the most accurate means of holding small workpieces in the lathe. The collet chuck consists of a spring machine collet (Figure 7-20) and a collet attachment which secures and regulates the collet on the headstock spindle of the lathe.

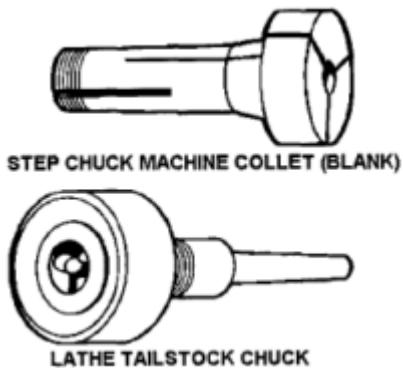
Figure 7-20. Spring machine collet chucks and installation method.

The spring machine collet is a thin metal bushing with an accurately machined bore and a tapered exterior. The collet has three lengthwise slots to permit its sides being sprung slightly inward to grip the workpiece. To grip the workpiece accurately, the collet must be no more than 0.005 inch larger or smaller than the diameter of the piece to be chucked. For this reason, spring machine collets are available in increments of 1/64 inch. For general purposes, the spring machine collets are limited in capacity to 1 1/8 inch in diameter.


The collet chuck is the most accurate means of holding small workpieces in the lathe.

For general purposes, the spring machine collets are limited in capacity to 1 1/8 inch in diameter.

The collet attachment consists of a collet sleeve, a drawbar, and a handwheel or hand lever to move the drawbar. The spring machine collet and collet attachment together form the collet chuck. Figure 7-20 illustrates a typical collet chuck installation. The collet sleeve is fitted to the right end of the headstock spindle. The drawbar passes through the headstock spindle and is threaded to the spring machine collet. When the drawbar is rotated by means of the hand wheel, it draws the collet into the tapered adapter, causing the collet to tighten on the workpiece. Spring machine collets are available in different shapes to chuck square and hexagonal workpieces of small dimensions as well as round workpieces.


The Jacob's spindle-nose collet chuck (Figure 7-21) is a special chuck used for the Jacob's rubber flex collets. This chuck combines the functions of the standard collet chuck and drawbar into one single compact unit. The chuck housing has a handwheel on the outer diameter that turns to tighten or loosen the tapered spindle which holds the rubber flex collets. Rubber flex collets are comprised of devices made of hardened steel jaws in a solid rubber housing. These collets have a range of 1/8 inch per collet. The gripping power and accuracy remain constant throughout the entire collet.

capacity. Jacob's rubber flex collets are designed for heavy duty turning and possess two to four times the grip of the conventional split steel collet. The different sets of these collets are stored in steel boxes designed for holding the collets. Collets are normally stored in steel boxes designed for holding the collets.

Figure 7-21. Jacob's spindle nose collet chuck and rubber flex collet.

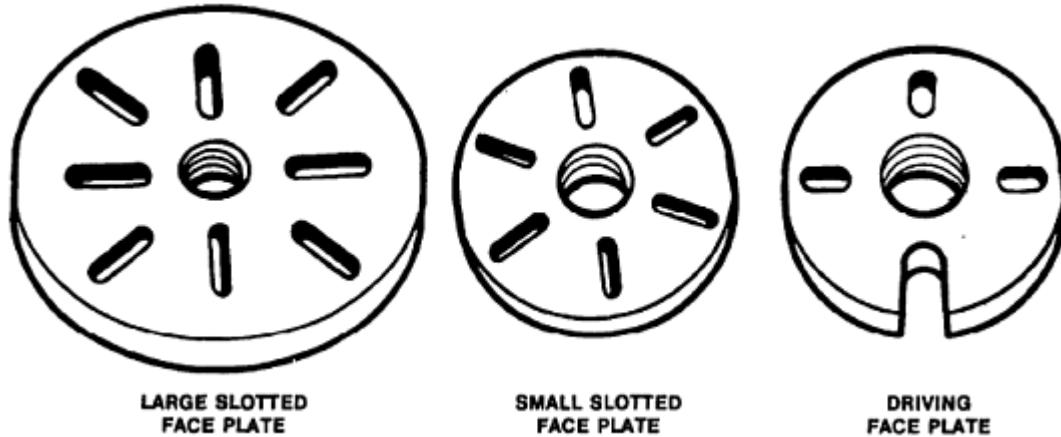
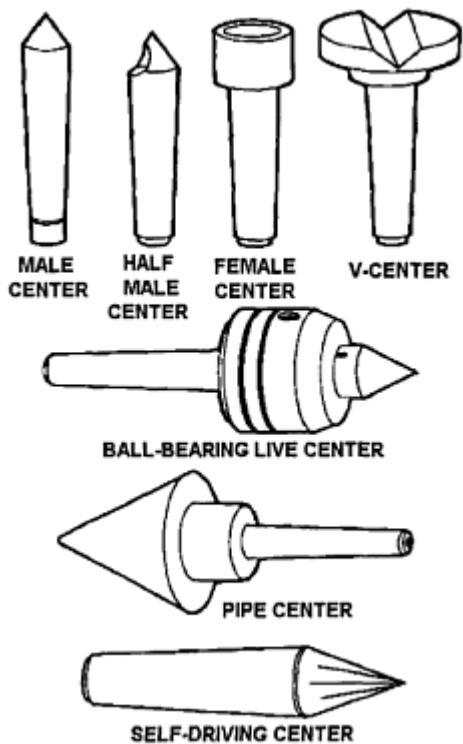

The step chuck, Figure 7-22, is a variation of the collet chuck, and it is intended for holding small round workplaces or discs for special machining jobs. Step chucks are blank when new, and then are machined in the lathe for an exact fit for the discs to be turned. The step chuck machine collet, which is split into three sections like the spring machine collet, is threaded to the drawbar of the collet attachment.

Figure 7-22. Step chuck machine collet and tailstock chuck.


The lathe tailstock chuck, Figure 7-22, is a device designed to support the ends of workplaces in the tailstock when a lathe center cannot be used conveniently. The chuck has a taper arbor that fits into the lathe tailstock spindle. The three bronze self-centering jaws of the chuck will accurately close upon workplaces between 1/4 and 1 inch in diameter. The bronze jaws provide a good bearing surface for the workpiece. The jaws are adjusted to the diameter of the workpiece and then locked in place.

A lathe faceplate, Figure 7-23, is a flat, round plate that threads to the headstock spindle of the lathe. The faceplate is used for irregularly shaped workplaces that cannot be successfully held by chucks or mounted between centers. The workpiece is either attached to the faceplate using angle plates or brackets or bolted directly to the plate. Radial T-slots in the faceplate surface facilitate mounting workplaces. The faceplate is valuable for mounting workplaces in which an eccentric hole or projection is to be machined. The number of applications of the faceplates depends upon the ingenuity of the machinist. A small faceplate known as a driving faceplate is used to drive the lathe dog for workpieces mounted between centers. The driving faceplate usually has fewer T-slots than the larger faceplates. When the workpiece is supported between centers, a lathe dog is fastened to the workpiece and engaged in a slot of the driving faceplate.

Figure 7-23. Faceplates.

Lathe centers, Figure 7-24, are the most common devices for supporting workplaces in the lathe. Most lathe centers have a tapered point with a 60° included angle to fit workplace holes with the same angle. The workpiece is supported between two centers, one in the headstock spindle and one in the tailstock spindle. Centers for lathe work have standard tapered shanks that fit directly into the tailstock and into the headstock spindle using a center sleeve to convert the larger bore of the spindle to the smaller tapered size of the lathe center. The centers are referred to as live centers or dead centers. A live center revolves with the work and does not need to be lubricated and hardened. A dead center does not revolve with the work and must be hardened and heavily lubricated when holding work. Live and dead centers commonly come in matched sets, with the hardened dead center marked with a groove near the conical end point.

Figure 7-24. Lathe centers.

The ball bearing live center is a special center mounted in a ball bearing housing that lets the center turn with the work and eliminates the need for a heavily lubricated dead center. Ball bearing types of centers can have interchangeable points which make this center a versatile tool in all lathe operations. Modern centers of this type can be very accurate. Descriptions for some common lathe centers follow.

The male center or plain center is used in pairs for most general lathe turning operations. The point is ground to a 60° cone angle. When used in the headstock spindle where it revolves with the workpiece, it is commonly called a live

center. When used in the tailstock spindle where it remains stationary when the workpiece is turned, it is called a dead center. Dead centers are always made of hardened steel and must be lubricated very often to prevent overheating.

The half male center is a male center that has a portion of the 60° cone cut away. The half male center is used as a dead center in the tailstock where facing is to be performed. The cutaway portion of the center faces the cutting tool and provides the necessary clearance for the tool when facing the surface immediately around the drilled center in the workpiece.

The V-center is used to support round workpieces at right angles to the lathe axis for special operations such as drilling or reaming. The pipe center is similar to the male center but its cone is ground to a greater angle and is larger in size. It is used for holding pipe and tubing in the lathe. The female center is conically bored at the tip and is used to support workpieces that are pointed on the end. A self-driving lathe center is a center with serrated ground sides that can grip the work while turning between centers without having to use lathe dogs.

A self driving center is a center that has grips installed on the outer edge of the center diameter that can be forced into the work to hold and drive the work when turning between centers without using lathe dogs.

Lathe dogs are cast metal devices used to provide a firm connection between the headstock spindle and the workpiece mounted between centers. This firm connection permits the workpiece to be driven at the same speed as the spindle under the strain of cutting. Three common lathe dogs are illustrated in Figure 7-25. Lathe dogs may have bent tails or straight tails. When bent-tail dogs are used, the tail fits into a slot of the driving faceplate. When straight-tail dogs are used, the tail bears against a stud projecting from the faceplate. The bent-tail lathe dog with headless setscrew is considered safer than the dog with the square head screw because the headless setscrew reduces the danger of the dog catching in the operator's clothing and causing an accident. The bent-tail clamp lathe dog is used primarily for rectangular workpieces.

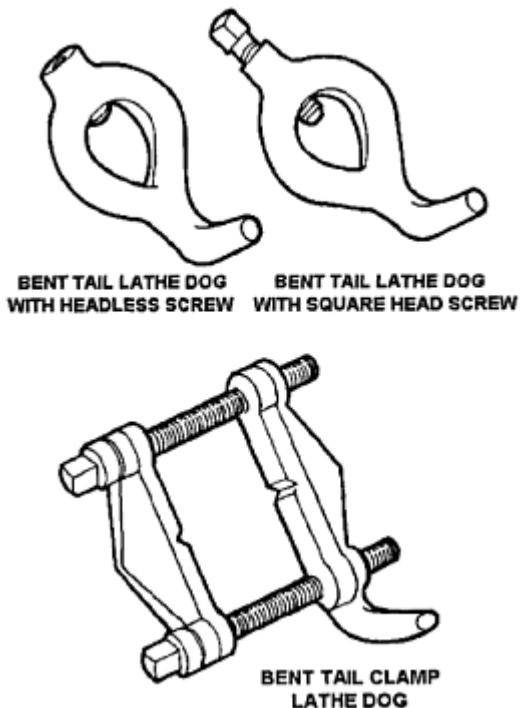
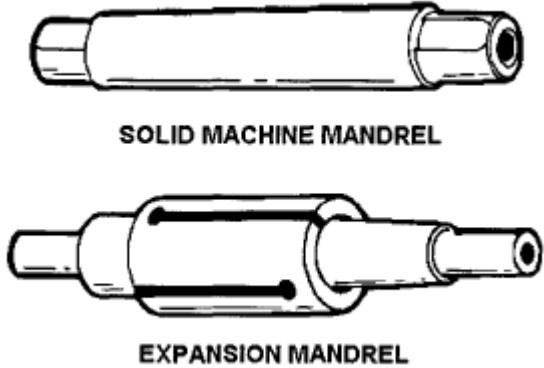



Figure 7-25. Lathe dogs.

MANDRELS

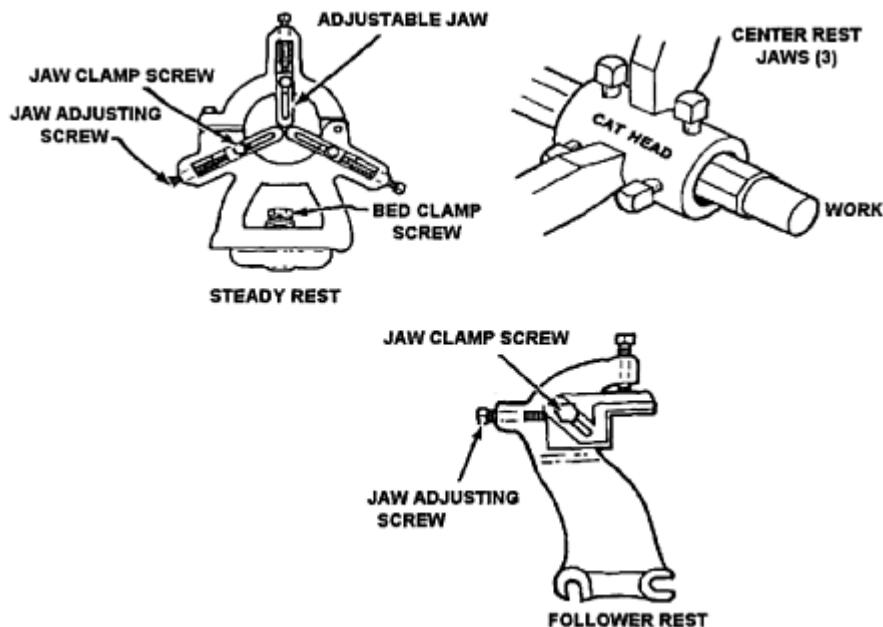
A workpiece which cannot be held between centers because its axis has been drilled or bored, and which is not suitable for holding in a chuck or against a faceplate, is usually machined on a mandrel. A mandrel is a tapered axle pressed into the bore of the workpiece to support it between centers (Figure 7-26).

Figure 7-26. Mandrels.

A mandrel should not be confused with an arbor, which is a similar device but used for holding tools rather than workpieces. To prevent damage to the work, the mandrel should always be oiled before being forced into the hole. When turning work on a mandrel, feed toward the large end which should be nearest the headstock of the lathe.

A solid machine mandrel is generally made from hardened steel and ground to a slight taper of from 0.0005 to 0.0006 inch per inch. It has very accurately countersunk centers at each end for mounting between centers. The ends of the mandrel are smaller than the body and have machined flats for the lathe dog to grip. The size of the solid machine mandrel is always stamped on the large end of the taper. Since solid machine mandrels have a very slight taper, they are limited to workpieces with specific inside diameters.

An expansion mandrel will accept workpieces having a greater range of sizes. The expansion mandrel is, in effect, a chuck arranged so that the grips can be forced outward against the interior of the hole in the workpiece.


LATHE ATTACHMENTS

The variety of work that can be performed on the lathe is greatly increased by the use of various lathe attachments.

Some lathes come equipped with special attachments; some attachments must be ordered separately. Some common lathe attachments are the steady rest with cathead, the follower rest, the tool post grinding machine, the lathe micrometer stop, the lathe milling fixture, the lathe coolant attachment, the lathe indexing fixture, and the milling-grinding-drilling-slotted attachment (or Versa-Mil). The lathe indexing fixture and Versa-Mil unit are detailed in Chapter 9. Descriptions for the other lathe attachments follows.

RESTS

Workpieces often need extra support, especially long, thin workpieces that tend to spring away from the tool bit. Three common supports or rests are the steady rest, the cathead, and the follower rest (Figure 7-27).

Figure 7-27. Lathe rests.

Steady Rest. The steady rest, also called a center rest, is used to support long workpieces for turning and boring operations. It is also used for internal threading operations where the workpiece projects a considerable distance from the chuck or faceplate. The steady rest is clamped to the lathe bed at the desired location and supports the workpiece within three adjustable jaws. The workpiece must be machined with a concentric bearing surface at the point where the steady rest is to be applied. The jaws must be carefully adjusted for proper alignment and locked in position. The area of contact must be lubricated frequently. The top section of the steady rest swings away from the bottom section to permit removal of the workpiece without disturbing the jaw setting.

Cathead. When the work is too small to machine a bearing surface for the adjustable jaws to hold, then a cathead should be used. The cathead has a bearing surface, a hole through which the work extends, and adjusting screws. The adjusting screws fasten the cathead to the work. They are also used to align the bearing surface so that it is concentric to the work axis. A dial indicator must be used to set up the cathead to be concentric and accurate.

Follower Rest. The follower rest has one or two jaws that bear against the workpiece. The rest is fastened to the lathe carriage so that it will follow the tool bit and bear upon the portion of the workpiece that has just been turned. The cut must first be started and continued for a short longitudinal distance before the follower rest may be applied. The rest is generally used only for straight turning and for threading long, thin workpieces. Steady rests and follower rests can be equipped with ball-bearing surfaces on the adjustable jaws. These types of rests can be used without excessive lubricant or having to machine a polished bearing surface.

Micrometer Carriage Stop. The micrometer carriage stop, Figure 7-28, is used to accurately position the lathe carriage. The micrometer stop is designed so the carriage can be moved into position against the retractable spindle of the stop and locked into place. A micrometer gage on the stop enables carriage movement of as little as 0.001 inch. This tool is very useful when facing work to length, turning a shoulder, or cutting an accurate groove.

Tool Post Grinder. The tool post grinder (Figure 7-29) is a machine tool attachment specially designed for cylindrical grinding operations on the lathe. It consists primarily of a 1/4- or 1/3- horsepower electric motor and a wheel spindle connected by pulleys and a belt. The machine fastens to the compound rest of the lathe with a T-slot bolt which fits in the slot of the compound rest in the same manner as the lathe tool post. The tool post grinding machine mounts grinding abrasive wheels ranging from 1/4 inch to 3 or 4 inches in diameter for internal and external grinding operations. The pulleys on the wheel spindle and motor shaft are interchangeable to provide proper cutting speeds for the various wheel sizes. The larger grinding abrasive wheels used for external grinding are attached to the wheel spindle with an arbor. Small, mounted

grinding abrasive wheels for internal grinding are fixed in a chuck which screws to the wheel spindle. The electric motor is connected to an electrical power source by a cable and plug. A switch is usually provided at the attachment to facilitate starting and stopping the motor.

Lathe Milling Fixture. This is a fixture designed to provide the ability for limited milling operations. Many repair and fabrication jobs cannot be satisfactorily completed on the standard engine lathe, but with the lathe milling attachment, the small machine shop that is not equipped with a milling machine can mill keyslots, keyways, flats, angles, hex heads, squares, splines, and holes.

TOOLS NECESSARY FOR LATHE WORK

In order to properly setup and operate most engine lathes, it is recommended to have the following tools on hand. A machinist tool box with all wrenches, screwdrivers, and common hand tools. A dial indicator may be necessary for some procedures on the lathe. References, charts, tables, and other predetermined data on machine operations may be useful to lathe operators. Keep all safety equipment, along with necessary cleaning marking, and lubricating equipment, in the immediate lathe area to use as needed.

CUTTING FLUIDS

The purposes of using cutting fluids on the lathe are to cool the tool bit and workpiece that are being machined, increase the life of the cutting tool, make a smoother surface finish, deter rust, and wash away chips. Cutting fluids can be sprayed, dripped, wiped, or flooded onto the point where the cutting action is taking place. Generally, cutting fluids should only be used if the speed or cutting action requires the use of cutting fluids. Descriptions of some common cutting fluids used on the lathe follow. Use Table 4-3 in Appendix A for additional information on cutting fluids.

Lard Oil. Pure lard oil is one of the oldest and best cutting oils. It is especially good for thread cutting, tapping, deep hole drilling, and reaming. Lard oil has a high degree of adhesion or oiliness, a relatively high specific heat, and its fluidity changes only slightly with temperature. It is an excellent rust preventive and produces a smooth finish on the workpiece. Because lard oil is expensive, it is seldom used in a pure state but is combined with other ingredients to form good cutting oil mixtures.

Mineral Oil. Mineral oils are petroleum-base oils that range in viscosity from kerosene to light paraffin oils. Mineral oil is very stable and does not develop disagreeable odors like lard oil; however, it lacks some of the good qualities of lard oil such as adhesion, oiliness, and high specific heat. Because it is relatively inexpensive, it is commonly mixed with lard oil or other chemicals to provide cutting oils with desirable characteristics. Two mineral oils, kerosene and turpentine, are often used alone for machining aluminum and magnesium. Paraffin oil is used alone or with lard oil for machining copper and brass.

Mineral-Lard Cutting Oil Mixture. Various mixtures of mineral oils and lard oil are used to make cutting oils which combine the good points of both ingredients but prove more economical and often as effective as pure lard oil.

Sulfurized Fatty-Mineral Oil. Most good cutting oils contain mineral oil and lard oil with various amounts of sulfur and chlorine which give the oils good antiweld properties and promote free machining. These oils play an important part in present-day machining because they provide good finishes on most materials and aid the cutting of tough material.

Soluble Cutting Oils. Water is an excellent cooling medium but has little lubricating value and hastens rust and corrosion. Therefore, mineral oils or lard oils which can be mixed with water are often used to form a cutting oil. A soluble oil and water mix has lubricating qualities dependent upon the strength of the solution. Generally, soluble oil and water is used for rough cutting where quick dissipation of heat is most important. Borax and trisodium phosphate (TSP) are sometimes added to the solution to improve its corrosion resistance.

Soda-Water Mixtures. Salts such as soda ash and TSP are sometimes added to water to help control rust. This mixture is the cheapest of all coolants and has practically no lubricating value. Lard oil and soap in small quantities are sometimes added to the mixture to improve its lubricating qualities. Generally, soda water is used only where cooling is the prime consideration and lubrication a secondary consideration. It is especially suitable in reaming and threading operations on cast iron where a better finish is desired.

White Lead and Lard Oil Mixture. White lead can be mixed with either lard oil or mineral oil to form a

cutting oil which is especially suitable for difficult machining of very hard metals.